Schwarzenberger Bundles of Arbitrary Rank on the Projective Space

نویسنده

  • E. Arrondo
چکیده

We introduce a generalized notion of Schwarzenberger bundle on the projective space. Associated to this more general definition, we give an ad-hoc notion of jumping subspaces of a Steiner bundle on P (which in rank n coincides with the notion of unstable hyperplane introduced by Vallès, Ancona and Ottaviani). For the set of jumping hyperplanes, we find a sharp bound for its dimension. We also classify those Steiner bundles whose set of jumping hyperplanes have maximal dimension and prove that they are generalized Schwarzenberger bundles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 1 Ju n 20 03 Holomorphic rank - 2 vector bundles on non - Kähler elliptic surfaces

The existence problem for vector bundles on a smooth compact complex surface consists in determining which topological complex vector bundles admit holomorphic structures. For projective surfaces, Schwarzenberger proved that a topological complex vector bundle admits a holomorphic (algebraic) structure if and only if its first Chern class belongs to the Neron-Severi group of the surface. In con...

متن کامل

. A G ] 1 1 Ju n 20 03 Holomorphic rank - 2 vector bundles on non - Kähler elliptic surfaces

The existence problem for vector bundles on a smooth compact complex surface consists in determining which topological complex vector bundles admit holomorphic structures. For projective surfaces, Schwarzenberger proved that a topological complex vector bundle admits a holomorphic (algebraic) structure if and only if its first Chern class belongs to the Neron-Severi group of the surface. In con...

متن کامل

Projective Models of the Twistor Spaces of Joyce Metrics

We provide a simple algebraic construction of the twistor spaces of arbitrary Joyce’s self-dual metrics on the 4-manifold H 2 × T 2 that extend smoothly to nCP, the connected sum of complex projective planes. Indeed, we explicitly realize projective models of the twistor spaces of arbitrary Joyce metrics on nCP in a CP-bundle over CP, and show that they contain the twistor spaces of H 2 × T 2 a...

متن کامل

Vector Bundles on Fano 3-folds without Intermediate Cohomology

A well-known result of Horrocks (see [Ho]) states that a vector bundle on a projective space has not intermediate cohomology if and only if it decomposes as a direct sum of line bundles. There are two possible generalizations of this result to arbitrary varieties. The first one consists of giving a cohomological characterization of direct sums of line bundles. This has been done for quadrics an...

متن کامل

Vector Bundles on Products of Varieties with n-blocks Collections

Here we consider the product of varieties with n-blocks collections . We give some cohomological splitting conditions for rank 2 bundles. A cohomological characterization for vector bundles is also provided. The tools are Beilinson’s type spectral sequences generalized by Costa and Miró-Roig. Moreover we introduce a notion of CastelnuovoMumford regularity on a product of finitely many projectiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008